
Thermal fluctuations of free-standing graphene

F. L. Braghin and N. Hasselmann
International Institute of Physics, Univ. Fed. do Rio Grande do Norte, 59072-970 Natal/RN, Brazil

�Received 14 June 2010; published 8 July 2010�

We use nonperturbative renormalization group techniques to calculate the momentum dependence of thermal
fluctuations of graphene, based on a self-consistent calculation of the momentum-dependent elastic constants
of a tethered membrane. We find a sharp crossover from the perturbative to the anomalous regime, in excellent
agreement with Monte Carlo results for the out-of-plane fluctuations of graphene, and give an accurate value
for the crossover scale. Our work strongly supports the notion that graphene is well described as a tethered
membrane. Ripples emerge naturally from our analysis.
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I. INTRODUCTION

Free standing graphene, the only presently known mono-
atomic two-dimensional crystal,1 should be an ideal tethered
membrane, i.e., a membrane made up of constituents with a
fixed connectivity that give rise to a finite shear modulus of
the membrane. Tethered membranes are known to have
highly unusual properties, such as the absence of any finite
elastic constants in the thermodynamic limit, a negative Pois-
son ratio, and fluctuations characterized by a large anoma-
lous dimension � in the infrared �IR� limit.2 Experiments
have not yet probed the large wavelength regime to test these
predictions, however, a negative Poisson ratio and anoma-
lous fluctuations have been seen in Monte Carlo �MC� simu-
lations of graphene based on an realistic effective many-body
interaction of C-atoms.3 One of the most surprising outcome
of experimental investigations of free standing graphene
were the observation of ripples in graphene sheets with a
characteristic scale 50–100 Å.4 While it was often argued
that these ripples are not compatible with the standard con-
tinuum elastic theory of tethered membranes,5,6 we demon-
strate below that they emerge naturally from it. Since ripples
are a finite scale phenomenon, this requires to go beyond the
asymptotic regime, which was investigated in previous the-
oretical investigations. Here, we present the most thorough
renormalization group �RG� treatment of tethered mem-
branes yet, a nonperturbative renormalization group �NPRG�
analysis of tethered membranes which is based on the expan-
sion of the effective action in terms of elastic coupling func-
tions which for the first time allows to extract the full mo-
mentum dependence of thermal fluctuations. Excellent
agreement with MC simulations of free standing graphene is
found. Ripples emerge as the real space analog of the Ginz-
burg scale, which is the crossover scale which separates the
anomalous regime from the perturbative one. We further cal-
culate the anomalous dimension both in the flat phase and at
the crumpling transition which is found to be of second
order.

In contrast to fluid membranes which are always
crumpled �the average of the normal of the surface vanishes�
the finite shear modulus stabilizes a flat phase with long
range order of the normals2,7 and the normal-normal correla-
tion function GN decays asymptotically for small momenta q
as GN�q��q−2+�, see Refs. 2, 8, and 9. The flat phase is

stable for ��0 and in fact all calculations yield a large
anomalous dimension, varying between �=2 /d=2 /3 from a
large d expansion for D-dimensional membranes embedded
in d-dimensional space,9 ��0.821 from the self-consistent
screening approximation10,11 and ��0.85 where the last re-
sult was obtained both from NPRG12 as well as from MC
simulations of graphene.3 The analysis from Ref. 12 was able
to reproduce all previously known results for general d, D
obtained via perturbative RG methods within a unified
framework. While the analysis in Ref. 12 is restricted to the
leading order of a derivative expansion of the action, here we
will significantly extend their analysis in a way which allows
to investigate thermal fluctuations at all momenta up to the
ultraviolet �UV� cutoff �we keep here only to the physical
most relevant situation d=D+1 but our results are easily
extended to the general case�. Our analysis also yields the
correlation functions for the in-plane modes, but we confine
the discussion to Ghh which for small q is related to the
normal-normal correlation function via GN�q2Ghh.2 How-
ever, since Ghh is more readily accessible than GN in the
NPRG approach, we will base our analysis on Ghh.

II. MODEL

We start from a Landau-Ginzburg type ansatz2,8,9,12 for the
energy functional of a tethered membrane H=Hb+Hst,
which consists of a bending part

Hb =
�̃

2
� dDx��a�aR�2 �1a�

and a stretching part

Hst =� dDx� r̃0

2
��aR�2 +

�̃

4
��aR · �bR�2 +

�̃

8
��aR · �aR�2� ,

�1b�

where R is a D+1 dimensional vector parametrizing the D
dimensional membrane which is embedded in a D+1 dimen-
sional space. The presence of an UV cutoff �0 is implicitly
assumed. The inverse temperature �=1 /kBT is absorbed in
the definition of the effective parameters, i.e., �̃=��, �̃

=��, �̃=��, and r̃0=�r0. If one writes the stretching part of
the membrane in terms of derivatives, ma=�aR�x�, a
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=1. . .D, the analogy to a Ginzburg-Landau expansion be-
comes apparent and one would expect a phase transition near
r̃0�0 from a symmetric, crumpled phase with �ma	=0,
which exists for positive r̃0 to a symmetry broken flat phase,
characterized by the order parameter �ma	=ma,0=Jea�0
where J is the magnitude of the order parameter and ea, a
=1. . .D, are unit vectors which span the membrane, �R	
=Jxaea.

Here, we shall be interested in the flat phase and therefore
rewrite Eq. �1b� by introducing the flat metric tensor gab

0

=ma,0 ·mb,0=J2�ab. Defining gab=ma ·mb and Uab= �gab
−gab

0 � /2, we find, up to constant,9

Hst =� dDx��̃Uab
2 +

�̃

2
Uaa

2 � , �2�

where we used the mean field result J�0
= 
−r̃0 / ��̃

+D�̃ /2��1/2 for the order parameter to cancel a term linear in
Uaa. It is convenient to separate in-plane and out-of-plane
deformations of the membrane by introducing 	ma=�aR
−ma,0 with 	ma= ��au ,�ah� such that h corresponds to out-
of-plane deformations and u=uaea. In these variables we
have Uab= �1 /2��J�aub+J�bua+�ah�bh+�au ·�bu�. Note that
if one ignores terms of third and fourth order in u and keeps
derivatives of u only up to second order, one finds, after a
rescaling8,9,12 �h ,u�→J�h ,u�, the minimal model for a flat

membrane,13 H� 1
2�dDx
�̄��a�ah�2+ �̄uab

2 + �̄
2 uaa

2 � with uab

=�aub+�bua+�ah�bh and �̄= �̃J4, �̄= �̃J4, and �̄= �̃J2. The
minimal model does however not possess the full symmetry
of the Ginzburg-Landau model defined by Eqs. �1a� and �1b�
and cannot describe the crumpling transition. Furthermore,
neglecting the fourth order derivative terms of u prevents an
accurate description of the membrane fluctuations at finite
momenta. We, therefore, do not use the minimal model here.

III. NONPERTURBATIVE RG APPROACH

The NPRG is based on the exact flow equation14 for the
cutoff dependent effective action 
� which for �=�0 coin-
cides with the bare action H,

�
�

��
=

1

2
Tr�
 �2
�

�� � ��
+ R��−1�R�

��
� , �3�

where � is the running IR cutoff and �, �� are any of the
fields ua or h. The trace stands for an integral over momen-
tum and a sum over internal indices. The regulator function
R� removes IR divergences arising from modes with k��
and will be specified below. The NPRG analysis of Ref. 12
was restricted to the flow of the parameters which appear
already in 
�0

. While this is sufficient to discuss the
asymptotic regime at vanishingly small momenta, the RG
transformation will in general lead to a momentum depen-

dence of �̃, �̃, and �̃, which must be accounted for in a
proper analysis of thermal fluctuations at finite momenta. For
���0 we shall therefore make a nonlocal ansatz of the form

�=
�

b +
�
st with


�
b =

1

2
� dDxdDx��̃��x − x���a

2R�x��b
2R�x�� �4a�

and


�
st =� dDxdDx���̃��x − x��Uab�x�Uab�x��

+
1

2
�̃��x − x��Uaa�x�Ubb�x��� . �4b�

This rather natural generalization of the effective action al-
lows to account for nonlocal correlations but at the same
time ensures that, as long as only the coupling functions �̃�,

�̃�, and �̃� and the parameter J� are renormalized, the ef-
fective action retains at all � the full symmetry of the origi-
nal model and thus all Ward identities will be obeyed. Apart
from the approximation that we only take into account the
irreducible correlations explicitly defined through Eqs. �4a�
and �4b�, which uniquely fixes the RG flow equations, no
further approximations will be made.

To derive the NPRG equations we expand 
� in the fields
	ma= ��au ,�ah�. The Dyson equation for the Greens func-
tion Ghh of the h field, defined via �hqh−q�	=V�q,q�Ghh�q�
where V is the D-dimensional volume, is

Ghh
−1�q� = G0,�

−1 �q� + 
hh�q� �5�

with �here and below we suppress in our notation the �
dependence of the coupling parameters�


hh�q� = ��̃q − �̃�0
�q4, �6a�

G0,�
−1 = �̃�0

q4 + R��q� , �6b�

where �̃�0
denotes the bare and momentum independent

value of the initial coupling constant �̃ defined at the UV
cutoff �0. The Greens functions of the in-plane modes, de-
fined via �uk

au−k�
b 	=V�k,k�Gab�k�, can be written in terms of

transverse and longitudinal components,

Gab�k� = G��k���ab − kakb/k2� + G��k�kakb/k2 �7�

with G�
−1=G0,�

−1 +
� for �= � , �, and


��k� = J2�̃kk
2 + ��̃k − �̃�0

�k4, �8a�


��k� = J2�2�̃k + �̃k�k2 + ��̃k − �̃�0
�k4. �8b�

To determine the flow of J� and the self-energies, we further
need the three and four point vertices. In a symmetrized form
they read


abc
�3� �k1,k2,k3� = − iJ��̃k3

�k1 · k2�k3
c�ab + �̃k2

�k1 · k3�k2
b�ac

+ �̃k1
�k2 · k3�k1

a�bc + �k1 · k2���̃k1
k3

a�bc

+ �̃k2
k3

b�ac� + �k1 · k3���̃k1
k2

a�bc + �̃k3
k2

c�ab�

+ �k2 · k3���̃k2
k1

b�ac + �̃k3
k1

c�ab�� , �9a�
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hha
�3� �q1,q2;k� = − iJ��̃k
�q1 · k�q2

a + �q2 · k�q1
a�

+ �̃k�q1 · q2�ka� , �9b�


abcd
�4� �k1,k2,k3,k4�

= �̃k12

�k1 · k3��k2 · k4� + �k1 · k4��k2 · k3���ab�cd

+ �̃k13

�k1 · k2��k3 · k4� + �k1 · k4��k2 · k3���ac�bd

+ �̃k14

�k1 · k2��k3 · k4� + �k1 · k3��k2 · k4���ad�bc

+ �̃k12
�k1 · k2��k3 · k4��ab�cd + �̃k13

�k1 · k3��k2 · k4�

��ac�bd + �̃k14
�k1 · k4��k2 · k3��ad�bc, �9c�


hhab
�4� �q1,q2;k1,k2� = �ab��̃q12


�q1 · k1��q2 · k2� + �q1 · k2�

��q2 · k1�� + �̃q12
�q1 · q2��k1 · k2�� ,

�9d�


hhhh
�4� �q1,q2,q3,q4� = ��̃q12

+ �̃q14
+ �̃q13

��q1 · q3��q2 · q4�

+ ��̃q12
+ �̃q13

+ �̃q14
��q1 · q4��q2 · q3�

+ ��̃q13
+ �̃q14

+ �̃q12
��q1 · q2��q3 · q4� ,

�9e�

where kij = �ki+k j�. The subscript h and momenta qi refer to h
fields while subscripts a . . .d and ki refer to u fields. The flow
equations for the order parameter J and the self-energies 
hh,

�, and 
� are rather long and shown diagrammatically in
Fig. 1. They yield coupled integrodifferential equations for
the flow of the coupling functions which must be solved

self-consistently. Note that the equations are closed, since all
three- and four-point vertices in Eqs. �9a�–�9e� are entirely
determined by coupling functions which can be extracted
from the self-energies. This is a result of the form of 
� in
Eqs. �4a� and �4b�, which relates the third and fourth order
vertices to lower order ones which in a usual field expansion
would have to be imposed through Ward identities.

We integrate the flow equations from the UV cutoff �
=�0 to �=0 numerically, using for numerical stability an
analytic regulator, R��q�= �̃q=0q4 / �exp
�q /��4�−1� �this
one, as well as a non-analytic regulator, were also used in
Ref. 12�. If we ignore the momentum dependence of �̃q, �̃q,
and �̃q our flow equations reduce to those reported in Ref.
12. In the flat phase we find for D=2 ��0.85 which agrees
with the derivative expansion result.12 For completeness, we
note that our NPRG approach yields for D=2 a second order
crumpling transition �to within numerical accuracy� with an
anomalous dimension ��0.64�5�, slightly larger than the
result ��0.627 obtained with a sharp cutoff and a derivative
expansion in,12 where a weak dependence of the flow on the
form of the regulator prevented a firm conclusion on the
order of the transition. Our result, obtained with a smooth
regulator, resolves this ambiguity in favor of a transition of
second order. However, we cannot rule out that terms of
higher order in the stress tensor would change the nature of
the transition.

IV. COMPARISON WITH MC DATA AND THE ROLE OF
THE GINZBURG SCALE

The MC data for Ghh were obtained from a system of
37 888 C-atoms with an accurate bond order potential
LCBOPII and T=300 K, see Refs. 3, 5, 16, and 17 for de-
tails. To reduce statistical noise, the out-of-plane distortions

hi were obtained by evaluating for each i the average h̄i
= �3hi+��i,j	hj� /6 where the sum runs over the three neigh-
bors of atom i.17 As expected, for small q one finds the
relation q2Ghh�GN between the correlation function of the
normals and the height fluctuation which for graphene is
extremely accurate even up to q�1 Å−1, see the inset in Fig.
2. Since the very small q data for Ghh is more noisy than that
of GN we used for the last three data points �q�0.07 Å−1�
the data of GN to calculate Ghh, the result is shown in Fig. 2.
The strong peak near qB=4� /3a�2.94 Å−1, where a is the
equilibrium lattice parameter, corresponds to the first Bragg
peak. It defines the upper limit beyond which continuum
theory is inapplicable and it serves as a natural UV cutoff for
the NPRG calculation, �0=qB. For smaller q the data shows
the scaling Ghh�q−4 of the perturbative regime and for very
small q the anomalous scaling Ghh�q−4+� where ��0.85
agrees with the NPRG result.

An important scale is the Ginzburg scale qG for the cross-
over from the perturbative to the anomalous regime. This
scale cannot be captured within a finite order derivative ex-
pansion. Perturbation theory2,7 yields for D=2 the rough
estimate

qG
pt � 
3K̃0/�2���1/2/�4�̃� �10�

with K̃0=4J2�̃��̃+ �̃� / �2�̃+ �̃�. Below we extract qG from
the numerical flow which gives a more accurate estimate.

+ 1/2 + 1/2

+ 1/2 + 1/2

= 0
!

=

=

= + 1/2 + 1/2

_

__

_

FIG. 1. �Color online� Flow diagrams for the one point vertex
�first line� and the self-energies 
hh �2nd line� and 
ab. Forcing the
one-point vertex to vanish for all � yields the flow of the order
parameter J� �Ref. 15�. Wiggly lines correspond to Gab propagators
and solid lines to Ghh. Lines with a dash correspond to single-scale

propagators defined via Ġab=−Gab
2 ��R� and Ġhh=−Ghh

2 ��R�.
Small open circles denote the order parameter and the solid dot a
derivative with respect to �.
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The RG equations require the initial form of �̃q , �̃q , �̃q
and the mean-field order parameter J�0

which are defined at
the UV cutoff �0. While we cannot rule out a q dependence
of the initial coupling functions, for simplicity and in accor-
dance with Eqs. �1a� and �1b� we choose q-independent con-
stant values for the initial form of the coupling functions. To
fix the initial value of � we use a value previously reported
in the literature, �=1.1 eV.3,5 The elastic properties were
studied in detail in Ref. 16 and values for the bulk modulus
B=J2��+�� and the shear modulus, in our notation J2�,
were extracted for moderate system sizes. For scales smaller
than the Ginzburg scale, all elastic constants are strongly

cutoff dependent and in particular in the IR limit �̃q=0 and
�̃q=0 vanish as �4−D−2� whereas �̃q=0 diverges as �−�. Values
of the elastic constants of free standing graphene must there-
fore be understood as valid only for a given system size �or
IR cutoff�. The system size used in Ref. 16 are for T
=300 K at the border of the perturbative regime and the
reported elastic constants are not yet strongly renormalized
and close to those at smaller scales. We therefore use these
results to fix the initial values of J2��9.95 eV Å−2 and
J2��2.41 eV Å−2. The initial value of the order parameter
J�0

2 �2.5 is chosen to give the best overall agreement with
the MC data. These values place graphene well inside the flat
phase, in accordance with numerical simulations which show
no sign of crumpling even at high temperatures.5 The NPRG
result for Ghh with these values and T=300 K is shown in
Fig. 2. The agreement with the MC data is very good, espe-
cially the sharpness of the crossover from the perturbative to
the anomalous regime is well reproduced. A simple phenom-
enological ansatz for the self-energy, 
hh= �̃�0

Aq4�qG /q��

with A fixed by the asymptotic behavior, does not lead to a
satisfactory description of the data, as was already noted in
Ref. 3, see Fig. 2. The Ginzburg scale is by standard defini-

tion the scale where self-energy correction to �̃q=0 equal the
bare parameter which allows to read qG�0.08 Å−1 directly
off the flow, which is slightly smaller than the perturbative
estimate qG

pt�0.12 Å−1 from Eq. �10�. The Ginzburg length
LG=2� /qG�80 Å is of the same order as experimentally
observed ripples4 which offers a natural explanation of their
appearance as just the real-space manifestation of the Ginz-
burg scale. Furthermore, experimentally the fluctuations
were found to be broadly distributed around a characteristic
scale, which is again in accordance with the behavior of Gh
around qG which is not characterized by a sharp feature at qG
but by a gradual crossover from the perturbative to the
anomalous regime. The qualitatively correct perturbative es-
timate of the Ginzburg scale Eq. �10� furthermore yields a
simple dependence of the Ginzburg scale on the temperature,
qG��K0kBT /�. If our interpretation of ripples in free
standing graphene is correct, the average real space scale of
ripples should thus increase as � /�K0kBT on lowering the
temperature, where K0 is the two dimensional Young’s
modulus.

V. CONCLUSIONS

In summary, we have presented a NPRG analysis for teth-
ered membranes which avoids a derivative expansion and is
the first to include the full momentum dependence of the
elastic coupling parameters. Our solution of the NPRG flow
equations is completely self-consistent and obeys all symme-
try constraints. In our approach the crumpling transition is
found to be of second order and we give an improved esti-
mate for the anomalous dimension at the transition. For the
flat phase of the membrane, we find excellent agreement
with MC results for the momentum dependence of the out-
of-plane fluctuations of free standing graphene. Also the
crossover region, which shows a relatively sharp crossover
from the perturbative regime to the anomalous scaling re-
gime which is characterized by a large anomalous dimen-
sion, is well reproduced. This strongly supports the notion
that free standing graphene behaves just as a tethered mem-
brane, albeit a very stiff one. The most important scale in the
analysis of the momentum dependence of the membrane
fluctuations is the Ginzburg scale which we find to be of the
same order as the experimentally determined characteristic
size of ripples. The observation of ripples at this scale should
thus be looked at as a confirmation of the continuum elastic
theory of tethered membranes, a notion which could also be
tested experimentally by measuring the characteristic ripple
scale as a function of temperature.
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FIG. 2. �Color online� Results for the out-of-plane fluctuations
q2Ghh�q� from NPRG �solid, black�, MC �dashed, red� and from a
simple phenomenological approximation discussed in the main text
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